Total-Pressure Vapor-Liquid Equilibrium Data for Binary Systems of Chlorobenzene with Nitromethane, Ethanol, Benzene, and 1-Chlorobutane

Jagjit R. Khurma, Ol Muthu, Sarat Munjal, and Buford D. Smith*

Thermodynamics Research Laboratory, Washington University, St. Louis, Missouri 63130

Total-pressure vapor-liquid equilibrium (VLE) data are reported at approximately 298, 348, and 398 K for each of four chlorobenzene binaries with nitromethane, ethanol, benzene, and 1-chlorobutane as the other components. The experimental *PTx* data were reduced to \mathbf{y}_i, γ_i , and G^E values by both the Mixon-Gumowski-Carpenter and the Barker methods, but only the Mixon et al. results are reported in their entirety. Six G^E correlations were tested in the Barker data reduction; the five-constant Redlich-Kister equation gave the best results. Various equations of state were used to estimate vapor-phase fugacity coefficients. The Peng-Robinson equation of state was used for the reported data for the nitromethane and 1-chlorobutane systems. The virial equation through the second term, with the coefficients predicted by the Hayden-O'Connell correlation, was used for the data reported for the ethanol and benzene systems.

Introduction

This is the second paper reporting total-pressure vapor-liquid equilibrium (VLE) data on binary systems containing chlorobenzene. The first paper (1) used acetone, acetonitrile, ethyl acetate, ethylbenzene, methanol, and 1-pentene as the other component. This paper reports data for nitromethane, ethanol, benzene, and 1-chlorobutane.

The apparatus and techniques for the experimental measurements have been described in detail in a previous paper (2), along with the defining equation for the activity coefficient and the definition of the standard states used.

Chemicals Used

The sources and purities of the chemicals used are listed in Table I. Activated molecular sieves (either 3A or 4A) were put into the chemical containers as they were received. Just prior to being loaded in the VLE cells, the chemicals were poured into distillation flasks and distilled through a Vigreux column (25-mm o.d. and 470 mm long). The first and last portions of the distillate were discarded. The retained samples were back-flushed with dry nitrogen and put into amber glass bottles for transfer to the cell-loading operation. The stated purities of the chemicals were verified chromatographically at this point.

None of the compounds exhibited any degradation during the VLE measurements. The cell pressures were stable with respect to time, and all liquids were still perfectly clear when removed from the cells at the end of the last isotherm.

Experimental Data

Tables II-V present the experimental *PTx* data. The "smooth" pressure values reported there are from the least-squares cubic splined fits used to provide the evenly spaced

Table I. Chemicals Used

component	vendor	stated purity, %
ethanol	U.S. Industrial Chemicals	200 proof
chlorobenzene	Burdick and Jackson	99.9+
1-chlorobutane	Burdick and Jackson	99.9+
benzene	Burdick and Jackson	99.9+

Figure 1. Deviation from Raoult's law for the nitromethane (1) + chlorobenzene (2) system.

values required by the finite-difference Mixon–Gumowski–Carpenter method (3) for reduction of *PTx* data.

Figures 1-4 show the experimental data in terms of the pressure deviation $P_{\rm D}$ from Raoult's law

$$P_{\rm D} = P - [P_2' + x_1(P_1' - P_2')]$$

where *P* is the experimental mixture pressure and the P_i' values are the pure-component vapor pressures. The deviation pressure plot emphasizes the scatter more than a *P* vs. x_1 plot but has the disadvantage of not indicating whether an azeotrope exists.

The point symbols in Figure 1-4 denote the experimental data points. The curves approximate—sometimes not very

Table II. Experimental P vs. x_1 Values for the Nitromethane (1) + Chlorobenzene (2) System

	298.15 K			348.17 K			398.26 K		
PRESSURE, KPA			PRESSURE, KPA			PRESSURE, KPA			
 ×1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	
 .0000 .0474 .09650 .2297 .31083 .61133 .6113 .61226 .9265 .91736 .95960	L • 629 6409 23 • 974 3 • 974 3 • 974 5974 5974 5974 5974 5974 5974 5974 5	1.64075 29.59766 23.59766 3.9716 3.2991 4.4.6789 4.99950 4.99389 4.99389 4.93399 4.93399 4.9378 4.9389 4.9399 4.9399 4.9399 4.93976 4.93976 4.93976 4.93976 4.93976 4.9397	.0000 .09474 .12964 .22964 .41872 .51323 .75226 .99786 .99786 .9000	16.351 21.554 255.64 32.554 32.5761 38.9761 38.980 412.924 42.924 43.180 42.924 43.180 42.921	16. 553 215. 833 329. 833 329. 833 355. 27 39. 833 39. 970 422. 922 422. 922 422. 922 422. 922 422. 922 422. 921	• 0000 • 0972 • 0956 • 2292 • 31184 • 5131 • 7520 • 7926 • 99786 • 99786 • 99786 • 99786 • 95900	84 • 81 104 • 04 1297 • 84 151 • 04 151 • 04 191 • 248 191 • 428 2002 • 42 2004 • 58 2003 • 858 2003 • 73	84.04 104.09 127.005 151.07 164.52 151.07 164.52 193.99 202.51 204.60 203.91 204.60 201.71	

Table III. Experimental P vs. x_1 Values for the Ethanol (1) + Chlorobenzene (2) System

	298.15 K			348.35 K			398.66 K	
	PRESSUR	Е, КРА		PRESSUR	E, KPA		PRESSU	RE, KPA
 X1	EXPTL	SMOGTH	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH
0004 00614 01295 128126 39954 488391 488391 488391 488391 488391 488391 489391 4890531 90531 1.0000	1 • 644 5 • 305 5 • 612 6 • 4108 6 • 794 7 • 3556 7 • 710 7 • 8929 7 • 914	1	.0000 .0610 .0791 .1289 .1811 .2921 .3951 .4857 .5837 .6950 .7814 .8519 .9058 .9631 1.0000	23.322 43.09 47.99 56.79 62.45 73.94 76.69 73.94 76.61 82.59 84.85 86.72 88.00 89.59	23.321 47.86 57.889 56.389 69.74 73.98 76.57 84.69 84.68 86.88 87.80 85.88 89.73	.0000 .05994 .12767 .29936 .39936 .5942 .7996 .39936 .5942 .7996 .5942 .7996 .90530 1.0000	85.51 169.58 1992.18 242.3 3773.0 3972.8 3373.0 3970.0 443.7 5 465.8 475.8 465.8 475.8 485.8 475.8 485.8 475.8 485.8 475.8 485.8 475.8 485.8 475.8 485.8 475.8 485.8 475	85.51 169.39 1901.55 2835 2835 372.60 377.60 377.60 377.60 443.97 475.68 505.0

Table IV. Experimental P vs. x_1 Values for the Benzene (1) + Chlorobenzene (2) System

	298.20 K			348.16 K			398.66 K		
	PRESSURE, KPA			PRESSURE, KPA			PRESSURE, KPA		
 X 1	EXPTL	SHOOTH	X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	
.0000 .0432 .0348 .1348 .1927 .3707 .47780 .6858 .7396 .9182 .9060	1.635 2.146 2.147 3.184 3.831 4.768 5.807 6.907 9.327 10.4886 11.886 11.886 12.755	1.635 2.147 2.147 3.328 4.743 3.328 4.5000 8.3000 8.110 9.301 10.859 12.757	.0000 .0431 .0957 .1347 .1927 .2770 .3704 .4777 .5778 .6855 .7893 .8304 .9181 .9582 1.000	16.333 19.445 25.4887 25.8887 29.93 42.884 42.884 64.42 71.677 80.677 80.867 80.67 80.67 80.654	16.338 19.436 25.436 25.4892 29.93 42.933 47.49 564.40 71.70 74.760 80.78 85.57	.0000 .0930 .1925 .1925 .37700 .57850 .57850 .8917 .892 .99580 .99580	85.38 96.38 109.09 133.59 158.20 2585.20 2585.30 2585.3 319.53 3341.3	85.42 96.23 1099.054 1133.64 1778.293 2030.56 2030.56 2030.56 2030.56 2030.56 2030.56 2050.52 2050.	

Table V. Experimental P vs. x_1 Values for the 1-Chlorobutane (1) + Chlorobenzene (2) System

	298.17 K			348.17 K			398.21 K		
	PRESSUR	E, KPA		PRES SUR	E, KPA		PRESSU	RE, KPA	
 X1	EXPTL	SMOOTH	X1	EXPTL	SMCOTH	X1	EXPTL	SMOOTH	
.0000 .0436 .0422 .2092 .3947 .4886 .6865 .8856 .88561 .9234 .9232 1.0000	1.638 2.2404 3.4884 4.3060 6.52267 8.8835 9.986 111.973 112.7690 13.654	1.641 2.236 2.480 4.299 5.5634 7.6832 9.983 11.970 12.759 13.654	.0000 .0435 .0435 .1420 .2090 .2894 .3944 .4896 .5883 .6863 .8855 .9233 .9233 .9233 .9233 .9233 .9202 1.0000	16.278 19.467 27.463 32.463 32.478 38.666 53.689 68.15 780.21 85.57 88.21	169.5687 •99191 •99191 29191 29191 •56687 •56687 •56687 •56687 •56687 •56687 •5677 •5687 •569127 •889 •327 •5687 •5777 •577	.0000 .0434 .04183 .1081 .2081 .3939 .4891 .58637 .68637 .68637 .68637 .9531 .96000	84.53 999.54 1622.24 1622.25 264 1973.22 2692.22 2024.25 224.54 1922.25 224.55 224.55 224.55 224.55 224.55 224.55 224.55 225 226.55 33.53 33.54	8 4 5 7 3 3 2 8 4 5 7 3 9 7 9 4 5 3 5 2 7 3 9 3 1 2 4 2 5 8 7 9 4 5 3 2 7 5 8 7 9 4 5 3 5 1 4 7 2 7 5 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	

Table VI. Calculated Data for the Nitromethane (1) + Chlorobenzene (2) System at 298.15, 348.17, and 398.26 K Obtained with the Mixon et al. Method and the Peng-Robinson Equation of State

LIQUID	MOLAR VOLU	MES, CC/MOL:	VL(1) =	53.942	VL(2) =	102.280		
X1 .0000 .2000 .3000 .4000 .5000 .6000 .7000 .8000 1.0000	TOTAL PRES EXPTL 1.629 3.012 3.761 4.183 4.641 4.776 4.383 4.949 4.949 4.949 4.782 MOLAR VOLU	SURE , KPA CALC , 1.629 3.013 4.183 4.641 4.393 4.641 4.776 4.949 4.949 4.943 4.782 IMES , CC/MQL :	MIXTURE F CDEFFIC 9994 9988 9984 9983 9982 9982 9980 9980 9980 9980 9979 9980 9979 9980 9980	UGACITY IENTS 9989 9976 99776 99773 99771 99770 9969 9969 9969 9969 9969 9970 57.211	Y1 •0000 •5045 •6314 •6886 •7247 •7521 •7762 •8028 •8327 •8327 10000 VL(2) =	ACTIVITY CDEF 1 4.4135 3.1809 2.4843 2.0083 1.6875 1.4598 1.2920 1.1710 1.0771 1.0213 1.0000 107.691	FFICIENTS 1.00000 1.0169 1.0629 1.2517 1.4093 1.63655 2.5355 3.3859 5.1503	EXCESS GIBBSS FUNCLION, J/MOLE00 324.27 570.48 7452.71 894.21 8745.75 852.71 894.46 608.56 349.31 0.00
X1 .0000 .1000 .3000 .4000 .6000 .7000 .9000 L.0000 LIQUIE	TOTAL PRES EXPTL. 16.350 25.321 31.563 37.372 39.763 41.163 42.263 42.263 42.203 MULAR VOLU	SSURE, KPA CALC. 16.350 25.322 31.564 35.274 37.372 39.760 41.162 42.262 42.295 43.212 42.203 JMES, CC/MOL	MIXTURE F C DEFFIC .9958 .9930 .9994 .9903 .9896 .9883 .9881 .9883 .9883 .9883	UGACITY IENTS 9928 9887 98863 9847 9836 9829 9823 9819 9816 9816 9816 9816 9822 61.120	Y1 •0000 •4193 •6358 •6358 •6359 •7248 •7248 •7947 •8351 •8957 •8057 •80	ACTIVITY COE 1 3.4207 2.5785 2.1058 1.7751 1.5407 1.3663 1.2337 1.1367 1.0197 1.0000 113.907	FFICIENTS 1.0000 1.0144 1.0510 1.1126 1.2006 1.3247 1.55010 1.7482 2.1412 2.6979 4.0137	EXCESS GIBBSS FUNCTION, J/MOLEO 311.54 546.51 818.03 858.80 835.11 744.51 838.81 838.81 744.79 582.70 338.12 0.00
X1 .0000 .2000 .3000 .5000 .5000 .6000 .7000 .8000 .9000 1.0000	TUTAL PRES EXPTL- 84.305 121.306 145.445 162.710 175.533 185.183 192.500 192.500 192.547 202.747 204.583 201.714	SSURE - KPA CALC- 84-805 121-208 145-449 162-713 175-535 185-184 192-601 198-544 202-747 204-532 201-714	MIXTURE F CUEFFIC 9851 9775 9775 9692 9667 9668 9633 9621 9612 9613	EUG AC I TY 2 I E N 2 97 36 96 25 95 54 95 54 94 40 94 40 94 94 93 94 93 92 94 07	Y1 • 0000 • 3560 • 5942 • 5913 • 7017 • 7492 • 8379 • 9019 1•0000	ACTIVITY COE 2.6586 2.1798 1.8413 1.6054 1.4298 1.2934 1.1877 1.1106 1.0525 1.0158 1.0000	FF I C I E NT S 1 • 0000 1 • 0408 1 • 0408 1 • 1594 1 • 1594 1 • 2588 1 • 3971 1 • 5829 1 • 8625 2 • 2726 3 • 1 401	EXCESS FUNCTION J/MOLE 289.17 510.21 668.64 766.96 784.72 699.41 547.55 318.59 0.00
KPA 1 20.00 24.00	ETHANOL (1)	+ CHLOROBENZ A 298.15 K B 348.35 K C 398.66 K	ENE (2)		Рн 9.00 9.50	BENZENE (1) + C 8 29 8 34 C 39	A A	+ + + + + + + + + + + + + + + + + + +
DEVIATION PRESSURE, K (×100 8.00 12.00 16.00	c ×	×			DEVIATION PRESSURE, KI	× × ×		×
0.00	0.20	0.40 0.60 X ₁	0.80	1.00		0.20 0.40	× × ×	0.80 1.00

Figure 2. Deviation from Raoult's law for the ethanol (1) + chlorobenzene (2) system. Decimal point must be moved one place to right in ordinate scale values.

Figure 3. Deviation from Raoult's law for the benzene (1) + chlorobenzene (2) system.

Table VII. Calculated Data for the Ethanol (1) + Chlorobenzene (2) System at 298.15, 348.35, and 398.66 K Obtained with the Mixon et al. Method and the Virial Equation of State through B_{ij}

LIQUID	MOLAR VOLUMES, CC/MOL	VL(1) ≠ 58.821	VL(2) = 102.280	
VIRIAL	COEFFICIENTS, CC/MOL:	B(1,1) = -2169.9	8(1,2) = -1185.8 8(2,2) = -3127.6
X1 • 000 0 • 2000 • 3000 • 4000 • 6000 • 6000 • 7000 • 8000 • 9000 1.000	TOTAL PRESSURE, KPA EXPTL. CALC. 1.643 1.643 5.325 5.824 6.523 6.523 6.309 6.809 7.020 7.0210 7.398 7.398 7.570 7.736 7.393 7.893 7.393 7.893 7.3910 7.910	$\begin{array}{c} \text{MIXTURE FUGACITY}\\ \text{CDEFFICIENTS}\\ 1\\ 0005 & 9979\\ 9954 & 9963\\ 9947 & 9963\\ 9944 & 9963\\ 9944 & 9963\\ 9944 & 9963\\ 9940 & 9964\\ 9938 & 9965\\ 9938 & 9965\\ 9936 & 9967\\ 9934 & 9971\\ 9932 & 9979\\ 9931 & 9994 \end{array}$	ACTIVITY COEFFI Y1 1 .0000 15.6072 1 .7317 5.4006 1 .7668 3.1670 1 .7810 2.2441 1 .7928 1.7610 1 .8199 1.2789 2 .8384 1.1468 2 .8663 1.0594 3 .9187 1.0187 3 1.0000 1.0000 5	EXCESS GIBBS CIENTS FUNCTION 2 .0000 0.00 .0545 536.46 1549 857.09 .2238 1048.08 .4728 1136.98 .7059 1140.09 .0232 1064.71 .4779 912.55 .1425 682.14 .9024 378.84 .6941 0.00
LIQUID	MOLAR VOLUMES, CC/MOL	: VL(1) = 63.708	VL(2) = 107.690	
VIRIAL	COEFFICIENTS, CC/MOL:	B(1,1) = -976.6	B(1,2) = -785.8 B(2,2) = -1857.1
X1 • 0300 • 1300 • 2000 • 3300 • 4000 • 5300 • 5300 • 5300 • 5300 • 5300 • 5300 • 5300 • 5300 • 5300 • 1000 •	TOTAL PRESSURE, KPA EXPTL. CALC. 23.321 23.321 52.272 52.270 63.919 63.917 70.129 70.128 74.141 74.141 77.161 77.161 80.041 80.041 82.828 85.430 85.430 87.759 87.759 89.726 89.726	MIXTURE FUGACITY CUEFFICIENTS 1.0025 .9850 .9363 .9744 .9813 .9719 .9787 .9710 .9770 .9706 .9757 .9706 .9757 .9706 .9744 .9709 .9731 .9717 .9718 .9734 .9706 .9765 .9697 .9816	ACTIVITY COEFFI 1 00000 4.3344 1 5878 3.4852 1 6803 2.4535 1 7222 1.8999 1 7496 1.5607 1 7726 1.3373 1 7726 1.3373 1 8299 1.0983 1 8698 1.0375 2 9252 1.0064 2 1.0000 3 VI (2) = 113.961	EXCESS GIBBS CIENTS FUNCTION 2 J/MOLE 0000 0.00 0144 398.88 0790 695.98 1741 883.01 3048 97.03 4799 988.59 7004 921.99 9827 784.87 3516 580.56 7827 313.16 1027 0.00
	COEFFICIENTS, COUNCIL	P(1,1) = -560.4	R(1,2) = +563.8 R(2,2)	2) = =1260.6
X1 •0000 •1000 •2000 •4000 •4000 •6000 •6000 •6000 •8000 •8000	TÚTAL PRESSURE + KPA EXPTL • CALC • 85.509 85.509 214.384 214.379 341.575 341.574 •374.801 374.801 423.788 423.787 445.088 445.088 465.667 485.463	MIXTURE FUGACITY COEFFICIENTS 1.0041 .9675 .9703 .9360 .9542 .9219 .9454 .9147 .9392 .9101 .9342 .90048 .9258 .9036 .9259 .9036 .9219 .9036 .9180 .9059	ACTIVITY COEFFI Y1 1 .0000 3.9133 1 .6220 2.0189 1 .7419 2.2737 1 .7887 1.8448 1 .8418 1.5641 1 .8418 1.5641 1 .8429 1.2294 1 .8452 1.1299 1 .9111 1.0594 2 .9454 1.0142 2	EXCESS GIBBS CIENTS FUNCTION 2 J/MOLE 0000 000 0143 385.82 0543 684.65 1302 892.85 2348 1012.58 3767 1009.19 8374 888.31 2315 685.10 8634 390.78

closely—the cubic splined fits of those data points. Interpolated values (at 0.025 increments in x_1) from the splined fits are fed to the plotting software which then makes its own fit of the input values. Those fits are often not very good if the curve is irregularly shaped. Nevertheless, the curves do help illustrate the scatter and the general behavior of the experimental points. For an accurate determination of how closely the splined fits represent the experimental points, Tables II–V must be used.

The nitromethane and ethanol systems show positive deviations from Raoult's law at all three temperatures. The nitromethane forms an azeotrope at all three temperatures. No azeotropes are formed with ethanol.

The benzene and 1-chlorobutane systems change their mind as the temperature increases (mixed deviation systems). Both systems are almost ideal with small positive deviations at room temperature. At 348 K, the benzene system is still almost ideal but the deviation at high x_1 values has become negative despite the fact that the positive deviation at low x_1 values has increased. The positive deviation in the 1-chlorobutane system increased across the composition range at 348 K but the slight sag at the higher x_1 values is a portent of the behavior at 398 K. At the highest temperature, the positive deviation of the 1-chlorobutane system at low x_1 values has increased further but the deviation is definitely negative at the high x_1 values. The benzene system has become a negative deviation system at all compositions, and the system has become more nonideal. Neither the benzene nor the 1-chlorobutane system forms an azeotrope at any of the three temperatures.

Reduced Data

The y_i , γ_i , and G^E values selected for publication are in Tables VI–IX. Those values were obtained with the Mixon et al. data reduction method (3). The Peng–Robinson equation of state (4) was used for the nitromethane and 1-chlorobutane systems to estimate the vapor-phase fugacity coefficients. The virial equation truncated after the second term was used for the ethanol and benzene systems. The Hayden–O'Connell (5) correlation was used to estimate the B_{ii} and B_{ij} values. The equation of state parameters are listed in Tables X and XI.

The "experimental" pressure values tabulated in Tables VI– IX are actually interpolated values from the cubic splined fits of the experimental P vs. x_1 values. (The fidelity with which the splined fits represent the actual experimental P values is shown in Tables II–V.) The "calculated" pressure values are from the Mixon et al. data reduction method and show how well that method can reproduce the original pressure data.

The calculated activity coefficient curves are shown in Figure

Figure 4. Deviation from Raoult's law for the 1-chlorobutane (1) + chlorobenzene (2) system.

Figure 5. Activity coefficients for the nitromethane (1) + chlorobenzene (2) system. Curves are from Barker results; points are from Mixon et al. method.

Figure 6. Activity coefficients for the ethanol (1) + chlorobenzene (2) system. Curves are from the Barker results; points are from Mixon et al. method.

Figure 7. Activity coefficients for the benzene (1) + chlorobenzene (2) system. Curves are from Barker results; points are from Mixon et al. method. Move decimal point one place to left in ordinate scale values.

Table VIII. Calculated Data for the Benzene (1) + Chlorobenzene (2) System at 298.20, 348.16, and 398.66 K Obtained with the Mixon et al. Method and the Virial Equation through B_{ij}

LIQUID VIRIAL	MOLAR VOL	UMES, CC/MOL NTS, CC/MOL:	: VL(1) = B(1.1) =	89.409	VL(2) = B(1.2)	102.280	B(2,2) = -3	125.7
X1 .0000 .1000 .2000 .3000 .5000 .5000 .6000 .7000 .8000 .9000 1.0000	TOTAL PRES EXPIL • 1.635 2.789 3.307 5.023 6.136 7.246 8.353 9.4558 10.560 11.660 11.660	SSURE , KPA 1.635 2.789 3.907 5.023 6.136 7.458 10.560 11.660 12.75 MES CC/MOUNT	MIXTURE F COEFFIC 9993 9993 9993 99970 9970 99963 99956 99949 99949 99936 99936 99929 99222	UGACITY IENTS 9979 99966 99954 99931 99931 9909 9898 9887 9887 9887 9885	Y1 •0000 •4705 •6628 •8330 •83353 •9201 •94680 •9854 •9680 •9854 1.0000	ACTIVITY 1 1.0962 1.0357 1.0211 1.0155 1.0120 1.0070 1.0070 1.0051 1.0014 1.0000	CDEFFICIENTS 1.0000 1.0025 1.0048 1.0066 1.0005 1.0107 1.0135 1.0173 1.0231 1.0231 1.0231 1.0231 1.0231	EXCESS GIBBS FUNCTION, J/MOLE 14.28 19.87 22.87 24.63 23.68 21.39 17.48 11.27 0.00
VIRIAL	COEFFICIEN	NTS, CC/MOL:	B(1,1) =	-988.1	B(1,2) =	-13C0.0	B(2,2) = -18	860.2
X1 •0000 •2000 •2000 •4000 •5000 •6000 •6000 •0000 1.0000 LIQUID VIRIAL	TOTAL PRE EXPTL. 16.338 23.458 30.442 37.413 44.395 51.388 58.394 65.414 72.449 79.502 86.574 MOLAR VOLU	SSURE, KPA (ALC) 16.338 23.457 30.441 37.412 44.394 51.387 51.387 56.413 79.502 86.574 JMES, CC/MOL:	MIXTURE F COEFFIC 99588 99528 99588 99588 99580 9850 9850 9850 98601 9777 9773 97729 97729 97704 : VL(1) = B(1,1) =	UGACITY IENTS 9895 9852 9813 9775 97738 97701 9628 9526 9528 95596 9519 102.570 -710.7	Y1 •0000 •3697 •5657 •6890 •7741 •8364 •9219 •9526 •9792 1.0000 VL(2) = B(1,2)	ACTIVITY 1.0443 1.0269 1.0165 1.0165 1.0065 1.0065 1.0065 1.0065 1.0065 1.0065 1.0006 1.00	COEFFICIENTS 1.0000 1.0008 1.0026 1.0026 1.0075 1.0075 1.0075 1.0125 1.0165 1.0232 1.0472 B(2.2) = -1	EXCESS GIBBS FUNCTION, JYMOLE 9.88 15.43 18.42 19.90 20.19 19.35 17.32 13.92 8.72 0.00
X1 • 0000 • 2000 • 3000 • 5000 • 7000 • 7000 • 8000 • 9000 1 • 0000	TOTAL PRES EXPTL • 85•482 10435 135•535 135•748 211•15 262•445 211•15 262•445 314•76 341•406	SURE . KPA CAL C 42 150.431 135.436 160.742 211.165 262.436 288.466 288.466 341.406	MIXTURE FIC CDEFFC 9856 9726 9726 9726 9609 9552 9438 9381 9382 9382 9382 9266	UGACITY IENIZ 965899 97499 97437 97257 97257 97257 97098 90018 98858	Y1 • 02960 • 43344 • 6153 • 78657 • 89433 • 93508 1 • 0000	ACTIVITY 1.0228 1.0187 1.0150 1.0157 1.0089 1.0064 1.0027 1.0014 1.0004 1.0004 1.0004	COEFFICIENTS 1.0000 1.0002 1.0009 1.0019 1.0034 1.0054 1.00111 1.0151 1.0151 1.0323	EXCESS GIBBS FUNCTION, J/MOLE 6.76 12.11 16.05 19.62 19.19 19.22 13.60 8.12 0.00
0-i 	HLGROBUTANE	(1) + CHLOROBE A 298.17 K 8 348.17 K C 398.21 K	NZENE (2)		ØE.0	ETHANOL (1) + CHLORGBENZE 298.15 K A MIXON - BARKER	ENE (2)
12.00 L					0.20 1 ×	$\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}{\overset{+}$	× × × × × × × × × * +	× × × × × × × × ×
FICIENTS (x10 ⁻¹) 11.60			:	 ¥ ♠	, КРА (×10 ⁻⁾) 0.10 X	+	▲ +	۵
HCTIVITY COE			Ĩ		(P _{ExP} - P _{CALC})	ΔΔ	Δ	▲ ▲ + ▲
40 10.		بر			20 - 0. X		+ 	+ +
00 10					30 -0.2	$\overset{a}{\underset{+}{\overset{+}{\times}}} \times \overset{a}{\underset{+}{\times}} \times \overset{x}{\underset{+}{\times}} \overset{x}{\underset{+}{\times}} \times \overset{x}{\underset{+}{\times}} \times \overset{x}{\underset{+}{\times}} \times \overset{x}{\underset{+}{\times}} \times \overset{x}{\underset{+}{\times}} \times \overset{x}{\underset{+}{\times}} \overset{x}{\underset{+}{\times}} \overset{x}{\underset{+}{\times}} \overset{x}{\underset{+}{\times}} \overset{x}{\underset{+}{\times}$	× × × × × × × × × ×	× × × _{× ×} × × *
0.00	0.20 0	.40 0.60 X,	0.80	4 00	0.00	0.20	0.40 0.60 X,	0.80 1.00

Figure 8. Activity coefficients for the 1-chlorobutane (1) + chlorobenzene (2) system. Curves are from Barker results; points are from Mixon et al. method. Move decimal point one place to left in ordinate scale values.

Figure 9. Comparison of the Barker and Mixon et al. results on the resolution error plot for ethanol (1) + chlorobenzene (2) at 348.35 K. Move decimal pont one place to left in ordinate scale values.

Table IX. Calculated Data for the 1-Chlorobutane (1) + Chlorobenzene (2) System at 298.17, 348.17, and 398.21 K Obtained with the Mixon et al. Method and the Peng-Robinson Equation of State

LIQUID MOLAR VOLUMES, CC/MOL: VL(1) = 105.126 VL(2) = 102.282

	TOTAL PRES	SURE, KPA	MIXTURE I CDEFFI	FUGACITY		ACTIVITY COU	EFFICIENTS	EXCESS GIBBS FUNCTION
X1	EXPTL.	CALC.	1	2	¥1	- 1	2	J/MOLE .
•000C	1.641	1.641	• 9 9 9 1	•9989	.0000	1.1641	1.0000	_0.00
•1000	2.959	2,959	•9984	•9981	• 498 9	1.0879	1.0033	28,26
•2000	4.187	4.187	•9978	.9973	•6832	1.0532	1.0087	42.89
.3000	5.398	5.399	•9971	•9965	•78 38	1.0379	1.0135	51.02
.4000	6.598	6.598	•9965	.9957	• 84 75	1.0279	1.0188	55,02
.5000	7.787	7.787	.9959	.9949	.9916	1.0203	1.0250	55,55
• 6000	8.967	8.967	.9952	.9942	•9240	1.0141	1.0327	52.74
.7000	10.141	10.141	9946	.9934	•9491	1.0091	1.0422	46,51
•8000	11.313	11.313	•9940	.9927	• 9692	1.0952	1.0546	36.59
•9000	12.485	12.485	.9934	.9919	.9958	1.0022	1.0726	22.33
1.0000	13.654	13.654	9927	.9911	1.0000	1.0000	1.1516	0.00

LIQUID MOLAR VOLUMES, CC/MOL: VL(1) = 112.244 VL(2) = 107.690

			MIXTURE I	FUGACITY				GIABS
	TOTAL PRES	SURE, KPA	COEFFI	CIENTS		ACTIVITY CO	EFFICIENTS	FUNCTION,
X1	EXPTL.	CÁL C.	1	2	¥1	1	2	JZMOLE
• COOO	16.299	16.299	.9943	.9928	.0000	1.1401	1.0000	0.00
1000	24.413	24.413	. 9913	9892	3954	1.0869	1.0024	30,27
2000	32.092	32.091	.9986	9859	.5878	1.0589	1.0068	48.78
.3000	39.631	39.630	.9859	.9826	.7054	1.0430	1.0118	60.37
4000	47.072	47.071	. 9833	9793	7854	1.0314	1.0179	66.63
.5000	54.448	54.447	.9806	.9761	.9437	1.0222	1.0253	68.06
\$6000	61.791	61.790	9780	9729	. 8885	1.0151	1.0342	64.91
.7000	69.126	69.126	.9754	.9697	. 92 42	1.0095	1.0449	57.23
8000	76.479	76.479	9728	.9666	. 9536	1.0054	1.0577	44.92
. 9000	A3.A7Ó	83.870	.9702	9633	. 97 <u>8</u> 4	1.0026	1.0750	27.56
1.0000	91.216	91.216	.9676	9602	1.0000	1.0000	1.1726	0.00

LIQUID MOLAR VOLUMES, CC/MOL: VL(1) = 121.277 VL(2) = 113.900

			MIXTURE	FUGACITY				GIBBS
¥ 1	EVOTI	SURE, KPA	CUEFFI	CIENIS	~ 1	ACTIVITY CON	EFFICIENTS	FUNCTION
. ôô.	94.573	84 573	0702	0727	11	1 1 2 2 0	1 0000	JAMULE
1000	112.856	112.853	. 9733	9650	. 31 77	1.0653	1.0016	22 62
2000	140.171	140.167	9654	9566	5052	1.0652	1.0051	55.36
.3000	167.061	167.059	. 9587	9484	6314	1.0495	ilőiói	71.26
• 4 0 0 0	193.665	193.662	.9521	.9403	.7231	1.0367	1.0169	90.79
• 5 0 0 0	220.107	220.105	• 9456	• 9322	• 79 3 3	1.0260	1.0254	84.11
• 6000	246.519	246.519	• 9391	•9242	• 54 94	1.0173	1.0362	91.16
• / 0 0 0	2/3.073	2/3.052	• 9326	• 9162	• 8957	1.0105	1.0492	71.89
• 8000	277.000	233.000	• 3280	• 9081	• 9351	1.0056	1.0647	56 22
1.0000	354. 376	354.376	- 91 75	• 0 7 7 7 • R 0 1 7	1 0000	1.0025	1.1430	33.97
1.0000	3746 210	5541570	• 71 2 0		1.0000	1.0000	101/31	0.00

Table X. Parameters for Peng-Robinson Equation $(4)^a$

component	<i>T</i> _c , K	P _c , MPa	ω	
nitromethane	588.0	6.313	0.3460	-
1-chlorobutane	542.0	3.688	0.2180	
chlorobenzene	632.4	4.520	0.2490	

^a Binary interaction constant was set at 0.0 for all systems.

Table XI.	Virial	Coefficient	Values	(5)
-----------	--------	-------------	--------	-----

system	Т, К	<i>B</i> ₁₁	B 1 2	B 22
ethanol (1) +	298.15	-2169	-1186	-3128
chlorobenzene (2)	348.35	-977	-786	1857
	398.66	-560	-564	-1261
benzene (1) +	298.20	-1509	-2068	-3126
chlorobenzene (2)	348.16	988	1300	-1860
	398.66	~711	912	-1261

5–8 for both the Mixon et al. and the Barker (6) data reduction methods. The Barker results shown used the five-constant Redlich-Kister equation to represent G^{E} and used the same equations of state as the Mixon et al. calculation (see Tables X and XI).

Table XII. Comparison of the Barker and Mixon et al. Results

EXCESS

	max % c	max % dev in P ^a		% dev ^b
temp, K	Barker	Mixon	Barker	Mixon
Nitrometha	ne(1) + Cl	lorobenzen	e (2), Peng-1	Robinson
298.15	0.285	0.190	0.140	0.079
348.17	0.072	0.106	0.040	0.045
398.26	0.059	0.055	0.030	0.024
Ethanol (1) +	Chloroben	zene (2), Vi	rial, Hayden	-O'Connell
298.15	0.490	0.360	0.243	0.181
348.35	0.786	0.266	0.297	0.133
398.16	0.544	0.261	0.186	0.109
Benzene (1) +	- Chlorober	zene (2), Vi	irial, Hayden	-O'Connell
298.20	0.316	0.276	0.123	0.107
348.16	0.099	0.0 6 6	0.036	0.033
398.66	0.051	0.122	0.024	0.044
1-Chlorobut	ane (1) + C	hlorobenzer	ne (2), Peng-	Robinson
298.17	0.449	0.428	0.164	0.163
348.17	0.335	0.349	0.106	0.115
398.21	0.158	0.144	0.585	0.049

^a % dev = 100[$|P_{calcd} - P_{exptl}|/P_{exptl}$]. ^b rms for % dev = $[\Sigma^{n}(\% \text{ dev})^{2}/n]^{1/2}$.

Table XIII. Effect of Calculation Method on γ_i^{∞} Values for the Ethanol (1) + Chlorobenzene (2) System^a

	300	uracy of P	fits			calcd γ_i	i [∞] values		
	m	ax % dev/m	nsd		component 1 component 2			t 2	
calculation method	298.15 K	348.35 K	398.16 K	298.15 K	348.35 K	398.16 K	298.15 K	348.35	K 398.16 K
Mixon et al.	0.4/0.2	0.3/0.1	0.3/0.1	15.562	4.271	3.822	5.566	2.905	3.154
Barker:									
absolute Van Laar	5.7/2.6	1.3/3.8	0.8/0.4	10.959	5.135	3.565	4.330	3.144	3.302
Wilson	0.9/0.4	2.4/0.9	1.5/0.6	17.270	5.651	3.735	5.375	3.345	3.468
NRTL	1.4/0.7	1.1/0.4	0.9/0.4	14.636	5.092	3.610	5.776	3.118	3.348
modified Margules	0.1/0.0	1.7/0.6	2.0/0.7	20.079	4.825	3.459	5.236	3.017	3.549
UNIQUAC	4.7/2.3	1.2/0.4	0.9/0.4	11.602	5.150	3.588	4.422	3.106	3.316
Redlich-Kister, five constants	0.5/0.2	0,8/0.3	0.5/0.2	15.809	4.916	3.317	5.594	2.930	3.268
Gautreaux-Coates:									
splined fits				15.519	4.228	3.843	5.547	2.903	3.135
$P_{\rm D}/x_1x_2$ plots					4.453	3.450	5.323	3.090	3.276

^a Virial equation, Tsonopoulous correlation (7).

Table XIV. Effect of Equation of State Choice on γ_i^{∞} Values Obtained with Mixon et al. Method for Ethanol (1) + Chlorobenzene (2) at 398.16 K

	γ_i^{∞}		
eq of state used	1	2	
ideal gas	3.6839	3.6369	
virial through B_{ii} :			
Tsonopolous (7)	3.8218	3.1537	
Hayden-O'Connell (5)	3.9133	3.6278	
Redlich-Kwong, Lu	3.7938	3.3872	
modification(11)			

The points in Figures 5-8 are the evenly spaced Mixon et al. values while the curves represent the Barker results. (As in the case of the $P_{\rm D}$ curves in Figures 1–4, the curves plotted are approximations by the plotting software of the Barker input values; hence, small irregularities in the shapes of the curves are usually the fault of the plotting program rather than the Barker fit.) Both methods agreed very well for the nitromethane data sets but not so well for the other systems.

As shown in Table XII, the two methods reproduced the experimental P values at about the same level of accuracy for all systems but the ethanol system. A further comparison for that system is shown in Table XIII. Of the six G^{E} correlations tried with the Barker method, only the five-constant Redlich-Kister equation reproduced the experimental P values at a level close to that of the Mixon et al. results. (The maximum percent deviation and root-mean-squared deviation (rmsd) values tabulated were calculated as shown at the bottom of Table XII.) However, as shown in the resolution error band plot in Figure 9, some of the Barker points fell outside the error band even with the Redlich-Kister equation. The zero line in Figure 9 represents the experimental P values. The boundaries formed by the large X's represent the maximum plus or minus experimental errors which could result due to the resolution limitations of the devices used to measure the pressure, temperature, and mole fraction values. The formula used to calculate the maximum possible resolution errors has been given in a previous paper (8). The resolution error does not include errors such as operator error, inadequate degassing, chemical reactions, etc. (Note that the 10⁻¹ multiplier on the ordinate scale in Figure 9 means that the decimal point is to be moved one place to the left in the ordinate scale values.)

As shown in the Table XIII, the ethanol + chlorobenzene system is a difficult one for the popular G^E correlations. Note the variation in the ${\gamma_i}^\infty$ values, particularly at 298.15 K. The Redlich-Kister equation gives γ_i° values which agree fairly well with the Mixon et al. results but even that equation has trouble with the 298.15 K data set as shown in Figures 6 and 9.

The use of the $P_{\rm D}/x_1x_2$ plots along with the Gautreaux-Coates equations (9) to obtain γ_1^{∞} values has been discussed previously (10). The $(dP/dx_1)_1^{\infty}$ values needed by the Gautreaux-Coates equation were obtained both from the cubic splined fits and from extrapolation of the P_D/x_1x_2 plots. The $P_{\rm D}/x_1x_2$ plot could not be extrapolated with any certainty at 298.15 K for the ethanol + chlorobenzene system but otherwise the Gautreaux-Coates results support the general validity of the γ_1^{∞} values from the Mixon et al. method for that system.

The Mixon et al. "curves" in Figure 7 for the benzene + chlorobenzene system are very nicely spaced and are probably more reliable than the Barker results.

The activity coefficients for the 1-chlorobutane + chlorobenzene system do not vary much with temperature (see Figure 8). When the curves lie so close together, it is difficult to avoid crossing even when such crossing should not occur. From the shapes of the $P_{\rm D}$ curves for this system (see Figure 4), crossing of the activity coefficient curves was not unexpected. The Barker and Mixon et al. results agreed reasonably well except for the intercepts at $x_1 = 1.0$.

Besides depending upon the data reduction method used, the calculated y_i, γ_i , and G^{E} values depend upon the equation of state used for the vapor-phase fugacity coefficients. An indication of the magnitude of the effect on the γ_l values is given in Table XIV. The pressure for the ethanol + chlorobenzene system at 298.16 K ranged from 85.5 to 504.7 kPa.

Registry No. Chlorobenzene, 108-90-7; nitromethane, 75-52-5; ethanol, 64-17-5; 1-chlorobutane, 109-69-3; benzene, 71-43-2.

Literature Cited

- (1) Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 363.
- Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 16. Mixon, F. O.; Gumowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fun-(2) (3)
- dam. 1965, 4, 455.
- Peng, D.-Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 4, 455.
- Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209. (5)
- Barker, J. A. Aust. J. Chem. 1953, 6, 207.
- Tsonopoulos, C. AIChE J. 1974, 20, 263.
- (8) Muthu, O.; Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1980, 25, 163.
- (9)
- Gautreaux, M. F.; Coates, J. AIChE J. **1955**, *1*, 496. Maher, P. J.; Smith, B. D. *Ind. Eng. Chem. Fundam.* **1979**, *18*, 354. Hamam, S. E. M.; Chung, W. K.; Elshayal, I. M.; Lu, B. C. Y. *Ind. Eng. Chem. Process Des. Dev.* **1977**, *13*, 51. (11)

Received for review July 22, 1982. Accepted September 24, 1982. We gratefully acknowledge the financial support received from the National Sci-ence Foundation Grant CPE-80000534 and from the Industrial Participants in the Thermodynamics Research Laboratory.